flurfoerderzeuge.de
  STARTSEITE  flurfoerderzeuge.de
Jungheinrich
Wasserstoffder Weg weg vom Öl?Archiv
Wasserstoff - der Weg weg vom Öl?
Der Einbauraum
Der Einbauraum
Trotz des steigenden Ölpreises und der ungewissen Zukunft des Öls als 'Treibstoff' der Weltwirtschaft, wird die Suche nach Ersatzstoffen noch nicht mit der richtigen Effizienz betrieben. Dabei steht eine Technik, die umweltfreundlich und zugleich auf regenerative 'Treibstoffe' zurückgreift, eigentlich schon in den Startlöchern. Der wasserstoffbetriebenen Brennstoffzelle wird, nach Einschätzung anerkannter Fachleute in einem ausgereiften Stadium, eine ähnlich revolutionäre Rolle für die Energieversorgung im 21. Jahrhundert zugetraut, wie früher der Dampfmaschine.

Der wallisische Jurist und Physiker Sir William Robert Grove (1811 1896) legte mit der Konstruktion seines ersten Prototypen 1839 den Grundstein für die heutige Brennstoffzellentechnik. Dabei machte er sich den Umkehrprozess der Elektrolyse zu nutze. Bei der Brennstoffzelle wird, da es sich um eine exotherme Reaktion handelt, aus den Grundstoffen Wasserstoff und Sauerstoff wieder Wasser, wo
bei als Nebenprodukte Wärme und die im Wasserstoff enthaltene Energie abfallen. Der Aufbau einer Brennstoffzelle ist einfach. Platinelektroden, die in als Elektrolyt dienender verdünnter Schwefelsäure stehen, wird eine Spannung abgegriffen. Elektronenlieferanten sind an der einen Elektrode Sauerstoff und an der anderen Wasserstoff. Da die dort entstehende Spannung aber noch nicht ausreichte, schaltete auch Grove schon mehrere Brennstoffzellen zusammen.

Heutige Brennstoffzellen sind noch einfacher aufgebaut. Die Zelle besteht dabei, wie ein Sandwich, aus drei Schichten. Die erste Schicht ist die Anode, die zweite ein Elektrolyt und die dritte die Kathode. Die Elektrolytenschicht ist je nach Art der Brennstoffzelle fest, flüssig oder hat eine Membranstruktur. Mehrere Zellen werden in Reihe zu einem sogenannten 'Stack' geschaltet.

Im internationalen Vergleich gesehen, stehen rund 20 % der weltweit vorhandenen Wasserstofftankstellen in Deutschland. Ein Beispiel ist das 'Wasserstoffprojekt Flughafen München' der ARGE MUC (Arbeitsgemeinschaft Flughafen München). Hauptziele des groß angelegten Feldversuches sind
- der operative Einsatz von Wasserstoff
- die Darstellung eines geschlossenen Wasserstoffkreislaufes (Erzeugung bis zum Verbrauch)
- die Demonstration der Zuverlässigkeit die Ermittlung der Randbedingungen für einen wirtschaftlichen Einsatz
- die Entwicklung und Umsetzung sicherheitstechnischer Anforderungen im Umgang mit Wasserstoff
Der im 'Wasserstoffprojekt Flughafen' eingesetzte, sriennahe R60
Der im 'Wasserstoffprojekt Flughafen' eingesetzte, sriennahe R60
Von seinen Eigenschaften nimmt der Energieträger, eine Traktionsbatterie auf Blei Säure Basis als zentrales Element mit ca. 1,6t Eigengewicht Ca. 1 M3 Volumen ein. Damit ist eine Energieladung von 6oo Ah bei einer Spannung von 8o V untergebracht. Der nutzbare Energieinhalt beträgt ohne Tiefentladung ca. 40 kW/h. Im normalen Einsatz reicht dies für eine Betriebsdauer von 8 h, das heißt eine Schicht. Um möglichst aufschlussreiche und praxisnahe Resultate zu erzielen, wurde die Batterie durch ein komplettes, gleichwertiges System ausgetauscht, d.h. im Bauraum sollte, bei gleichbleibenden Leistungsdaten, die gleiche Energie verfügbar gehalten sowie alle Systemkomponenten untergebracht werden.

Die Vorteile für die Nutzung eines Brennstoffzellensystem:

• Tanken statt Laden, dadurch nur kurze
Unterbrechung des Einsatzes
• Nachtanken bei beliebigen Füllstand
• Kein Batteriewechsel
• Höhere Leistungs und Energiedichte
• Kein Schadstoffausstoß (C02)
• Erhöhung der Lebensdauer
Es fehlt lediglich der Beweis der Praktikabilität im Einsatz. Das Seriengerät muss also bis zum Ende des Projekts zeigen, das es keinen Einschränkungen unterliegt.

Gliederung des Systems

Alle Systemkomponenten finden in einem massiven Stahltrog Platz. Es gibt sechs wesentliche Teile:

Der Wasserstoffspeicher

Gespeichert ist die erforderliche Energie in Form von 2,5 kg gasförmigen Wasserstoff. Es werden zwei Tanks mit je 39 1 Volumen auf Basis eines bandagierten Aluminiumkerns verwendet.

Di Brennstoffzellenmodule

Die Umsetzung des Wasserstoffs erfolgt in PEM Modulen (Proton Exchange Meinbran). Es sind drei Module mit jeweils 6 kW Dauerleistung vorhanden. Jedes Modul enthält 4o Einzelzellen. Als Spannungsniveau ergibt sich eine Leerlaufspannung von lio V.

Der Kompressor

Zur Reaktion des Wasserstoffs wird der Sauerstoff der Umgebungsluft benötigt. Der elektrisch angetriebene, drehzahlgeregelte Luftkompressor liefert bedarfsgeregelt bis zu 100m³ pro Stunde.

Der Kühler

Der Wirkungsgrad der Umsetzung in elektrische Energie beträgt ca. 6o %. Er ist damit zwar deutlich besser als bei einem modernen Verbrennungsmotor mit ca. 40 %, es bleibt jedoch eine erhebliche Abw me abzuführen. Da aufgrund der Materialeigenschaften hier maximal 8o'C in den Modulen erlaubt werden kann,istein entsprechend großflächiger Kühler nötig.

Der Zwischenspeicher

Auf Basis von Elektrolyt Kondensatoren (sogenannten Ultra Caps) ist der elektrische Zwischenspeicher realisiert. 48 in Reihe geschaltete Kondensatoren m it je
weils 2.700 F nehmen die Bremsenergie auf und sorgen ferner für den Ausgleich bei Belastungsspitzen. Bei 112 V sind ca. 34o kW gespeichert. Nutzbar ist die Energiedifferenz zwischen lio und 72 V, äquivalent ca. 195 kJ. Dies entspricht der dreifachen Bewegungsenergie eines vollbeladenen Staplers mit einer Geschwindigkeit von ca. 16 km/h.

Das Gewicht

Mit Blick auf die geforderte Tragfähigkeit, ist das fehlende Gewicht der Bleibatterie durch Zusatzgewichte von ca. 1,2 t nachgebildet. Es gilt zwar, dass eine Tonne Stahl günstiger ist als eine Tonne Bleibatterie, jedoch ist diese Lösung für einen Serienstapler unbefriedigend. Hier sind weitere Überlegungen anzustellen, evtl. andere Dimensionierung des Gegengewichtes.

Quelle: Staplerworld 01/05
UNTERNEHMENSNACHRICHTEN
16.08.2018

CROWN Gabelstapler GmbH & Co. KG

Praxisbewährte Staplerlösungen

Kundenorientierte und zuverlässige Lösungen für sicheres und effizientes Arbeiten in der innerbetrieblichen Logistik zeigt Staplerhersteller Crown ...  MEHR
13.08.2018

Linde Material Handling GmbH

Lithium-Ionen-Portfolio komplett

Die letzte Lücke ist geschlossen: Ab sofort sind auch die größen Elektrostapler der Marke Linde im Traglastbereich von sechs bis acht Tonnen mit ...  MEHR
09.08.2018

Jungheinrich Aktiengesellschaft

Prämiertes VR-Training

Jungheinrich war beim Immersive Learning Award 2018 sehr erfolgreich und hat in der Kategorie „Customer Project“ Gold gewonnen. Das Konzept von ...  MEHR
06.08.2018

UniCarriers Germany GmbH

UniCarriers punktet mit kompletter Staplerflotte

Für das kürzlich in Betrieb genommene neue Logistikzentrum der VLS-Group hat UniCarriers die gesamte Staplerflotte geliefert. Am Standort in Mannheim ...  MEHR
03.08.2018

STILL GmbH

Vom Neueinsteiger zum Spielentscheider

Über 60 junge Talente starteten Anfang August ihre Ausbildung beim Intralogistikanbieter STILL. Dazu lud das Unternehmen den Nachwuchs zu einem ...  MEHR
31.07.2018

Stöcklin Logistik AG, Förder- und Lagertechnik

Lithium-Ionen-Batterien im Ex-geschützten Bereich

Für Einsätze in Ex-geschützten Bereichen hat die Stöcklin Logistik AG kürzlich die Lithium-Ionen-Batterie „LiTex“ vorgestellt. Damit können nun auch ...  MEHR
27.07.2018

YALE ••• Hyster-Yale Deutschland GmbH

Für ein präzises Handling

Im Bereich der Elektrostapler hat Yale Europe Materials Handling sein Produktportfolio mit dem Lithium-Ionen-Stapler ERP80VN verstärkt....  MEHR
NEWSLETTER
Ihre E-Mail-Adresse:
Abschicken
Nach der Anmeldung
erhalten Sie von uns eine
E-Mail. Bitte bestätigen Sie
den Link in der E-Mail.
Lectura Specs
Hier finden Sie weitere Artikel, die in unserem NEWS-Archiv hinterlegt sind. ... 
Google  
Web nur FFZ